8ek
a80
1OT
FmT
0dD
2bY
T3A
MNe
tac
E6N
jpD
MLj
EDy
cuR
Ujd
ECm
Qe6
8lB
vul
HaD
首页
科学研究
研究领域
论文成果
专利
著作成果
科研项目
科研团队
教学研究
教学资源
授课信息
教学成果
获奖信息
招生信息
学生信息
我的相册
教师博客
其他栏目
语种
English
熊胜林
教授 博士生导师 硕士生导师
性别:男
毕业院校:中国科学技术大学
学历:博士研究生毕业
学位:理学博士学位
在职信息:在职
所在单位:化学与化工学院
入职时间: 2011-07-13
所属院系: 化学与化工学院
学科:无机化学
办公地点:山东大学中心校区化学与化工学院老晶体北楼102室
访问量:
开通时间:
.
.
最后更新时间:
.
.
同专业博导
同专业硕导
论文成果
当前位置
中文主页
>>
科学研究
>>
论文成果
[1] 宗金贵. Engineering twin structures and substitutional dopants in ZnSe0.7Te0.3 anode material for enhanced sodium storage performance. 自然通讯, 16, 2025.
[2] 宗金贵. Effect of Combination Model of MoTe2 and MXene Layers on Sodium Ion Storage. ADVANCED MATERIALS, 2025.
[3] 袁佳. Alloying Strategy Regulating Size and Electronic Structure of Mo0.25Nb0.75Se2 to Achieve High-Performance Lithium-Sulfur Batteries. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024.
[4] 宋宁. Phase and Orbital Engineering Effectuating Efficient Adsorption and Catalysis toward High-Energy Lithium-Sulfur Batteries. ADVANCED MATERIALS, 2025.
[5] Bin Li. P-doped RuSe2 on Porous N-doped Carbon Matrix as Catalysts for Accelerated Sulfur Redox Reactions. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024.
[6] Zhengchunyu Zhang. Synchronous Regulation of d-Band Centers in Zn Substrates and Weakening Pauli Repulsion of Zn ions using the Ascorbic Acid Additive for Reversible Zinc Anodes. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024.
[7] 魏传亮. Rapid Growth of Bi2Se3 Nanodots on MXene Nanosheets at Room Temperature for Promoting Sulfur Redox Kinetics. Inorganic chemistry, 2024.
[8] 魏传亮. One-step growth of ultrathin CoSe2 nanobelts on N-doped MXene nanosheets for dendrite-inhibited and kinetic-accelerated lithium-sulfur chemistry. science bulletin, 2024.
[9] Fan Liu. Ordered Vacancies as Sodium Ion Micropumps in Cu-Deficient Copper Indium Diselenide to Enhance Sodium Storage. ADVANCED MATERIALS, 2024.
[10] Wang, Peng. Insights into the Optimization of Catalytic Active Sites in Lithium-Sulfur Batteries. ACCOUNTS OF CHEMICAL RESEARCH, 2024.
[11] 张华. Atomically Dispersed Co–Ru Dimer Catalyst Boosts Conversion of Polysulfides toward High-Performance Lithium–Sulfur Batteries. 先进材料, 2500950, 2025.
[12] 张华. Boosted electrosynthesis of hydrogen peroxide on isolated metal sites through second-shell modulation. NANO RESEARCH, 18, 2025.
[13] 王鹏. Niobium Phosphide-Induced Sulfur Cathode Interface with Fast Lithium-Ion Flux Enables Highly Stable Lithium-Sulfur Catalytic Conversion. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025.
[14] Li, Bin. Origin of Phase Engineering CoTe2 Alloy Toward Kinetics-Reinforced and Dendrite-Free Lithium?Sulfur Batteries. ADVANCED MATERIALS, 2023.
[15] Zhang, Zhengchunyu. Ligand Engineering Regulation toward Zn Ions and Zn Substrate for All-Climate Zn Metal Batteries. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025.
[16] 王鹏. WP Nanocrystals on N,P Dual-Doped Carbon Nanosheets with Deeply Analyzed Catalytic Mechanisms for Lithium-Sulfur Batteries. CCS CHEMISTRY, 5, 397-411, 2023.
[17] 王正冉. Ultrasmall CoFe Bimetallic Alloy Anchored on Fluoride-Free MXene by One-Pot Etching Strategy for the Barrier-Adsorption-Catalyst Functions of Polysulfides in Lithium-Sulfur Batteries. Advanced Functional Materials, 2024.
[18] 李媛. Boosting polysulfides conversion kinetics through heterostructure optimization and electrons redistribution for robust lithium-sulfur batteries. Chemical Engineering Journal, 497, 2024.
[19] 刘俊杰. Advanced electrolytes for sodium metal batteries under extreme conditions. 能源存储材料, 72, 2024.
[20] 倪志玮. Tri-anions regulated solvation structure in intrinsically nonflammable phosphate-based electrolytes for stable lithium metal batteries. 能源存储材料, 71, 2024.
共 325 条 1/17
首页
上一页
下一页
尾页
页